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APPROACH

 Zero-dimensional objects              

= POPULATIONS

QUANTITATIVE

APPROACH

 One-dimensional objects             

= TIME SERIES

QUANTITATIVE

APPROACH

Answer to question « How Much ? »

First case : POPULATIONS

SIXTH  PART 



QUANTITATIVE APPROACH

HOMOGENEITY 

AND 

HETEROGENEITY
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According to our definitions, a SET of 

UNITS is said to be  :

 HOMOGENEOUS : when ALL units are

STRICTLY IDENTICAL.

 HETEROGENEOUS : when this 

condition is not fulfilled.

Homogeneity can be defined but can

never be observed. Example of pure water

made of molecules H20, ions H+, OH-, O2- to 

say nothing of all possible isotopic combi-

nations of H and O. 3



The sampling of a homogeneous set by 

selection of entire units would, by definition of 

homogeneity, be a …

All sampling errors, THEREFORE, stem 

from one form or another of heterogeneity

A theory of sampling is therefore logically 

derived from a theory of heterogeneity.
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STRICTLY EXACT OPERATION

HETEROGENEITY IS THE UNIQUE 

SAMPLING ERROR GENERATOR



QUANTITATIVE APPROACH

THEORY OF 

HETEROGENEITY

Quantification of the heterogeneity      

of a zero-dimensional lot L
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We will distinguish between two main 

forms of heterogeneity :

 CONSTITUTIONAL HETEROGENEITY

The unit is a single constitutive element.

 DISTRIBUTIONAL HETEROGENEITY

The unit is a group of adjoining constitutive 

elements possibly correlated to one another.
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THE TWO MAIN FORMS 

OF HETEROGENEITY



Lot L is regarded as a POPULATION of

NU unspecified units Um : m = 1, 2, … NU

am : proportion of component A in unit Um

aL : proportion of component A in lot L

Mm : mass of unit Um

ML : mass of lot L ⧫ ML  NU  Mm*    with …

Mm* : mass of the average unit Um* of lot L
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DESCRIPTION OF LOT L 



By definition : am  aL irrespective of m.

Constitutional and distributional homoge-

neities can be mathematically defined but are

INACCESSIBLE LIMITS never to be obser-

ved in the real world. 

Any hypothesis of homogeneity is the-

refore unrealistic / dangerous. It amounts 

to solving a sampling problem by juggling it 

out. Lots of money have been lost as the 

result of this hypothesis. Human lives ?
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HYPOTHESIS OF HOMOGENEITY 



hm should logically be proportional to    

(am - aL) and weighted by the mass Mm

We found it easier to deal with relative, 

dimensionless quantities, hence the 

definition we have retained for hm :

HETEROGENEITY hm of 

UNIT Um WITHIN LOT L

K (am - aL) Mm (dimension of a mass)

(am - aL)      Mm

hm = ------------  ------- (dimensionless)

aL               Mm* 9



A thorough definition of hm is …

To shorten this lengthy definition, we will,

from now on, call it :

 The heterogeneity hm , a function of 

both grade am and mass Mm , is a convenient 

and thorough descriptor of unit Um . 
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PROPERTIES OF hm

« CONTRIBUTION of UNIT Um to the 

HETEROGENEITY of lot L ».

« The HETEROGENEITY of Um [in lot L] »



The heterogeneity hm had attracted our 

attention when we developed the « Equipro-

bable sampling model » because the 

« sampling variance » was found to be 

proportional to ²(hm). This was confirmed 

when we developed the much more sophis-

ticated « PROBABILIST MODEL » in 1979.
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PARAMETER hm CAN THEREFORE  BE 

REGARDED AS THE TRUE « VECTOR »

OF STRUCTURAL SAMPLING ERRORS.



 It is easy to show that, for the NL units of L :

 Heterogeneities are additive (like masses) 

 Heterogeneity hn of a group Gn is …

where …

m is extended to the NG units Um of Gn

Gn can be an Increment I or a Sample S

 Thanks to its properties, hm is a powerful 

tool in our study of the structural sampling 

errors expressed by the mathematical model.
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m hm  0

hn  m hm

m(hm)  0



We first consider lot L as a population of NF

constituents Fi with i = 1, 2, … NF . Those 

constituents can be fragments (hence the F ),

molecules or ions. The heterogeneity of Fi is

hi . We now define … 

CHL : Constitutional Heterogeneity of lot L

CONSTITUTIONAL 

HETEROGENEITY CHL of LOT L

1

CHL  ²(hi )  -----  i hi ² since i hi  0 

NF 13



CHL suffers from a serious shortcoming.

It can usually NOT be computed. For this 

reason we define the easy to compute HIL :

HIL : Heterogeneity Invariant of lot L

Use of CHL will be limited to theoretical de-

velopments, that of HIL to practical issues. 14

HETEROGENEITY

INVARIANT HIL of LOT L

ML

HIL  CHL  Mm*  CHL  ------ (mass)

NF



We now consider lot L as a population of NG

groups Gn of adjoining constituents with n = 

1, 2, … NG . The heterogeneity of Gn is hn

We now define …

DHL : Distributional Heterogeneity of lot L

15

DISTRIBUTIONAL 

HETEROGENEITY DHL of LOT L

1

DHL  ²(hn )  ----- n hn ² since n hn  0

NG



  The constitutional heterogeneity CHL  

is an intrinsic property of the population 

of NL constituents Fi . 

  It is unaffected by blending mixing or 

gravity segregation. 

  The same holds true for the (Consti- 

tutional) Heterogeneity Invariant HIL 
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PROPERTIES OF THE 

CONSTITUTIONAL 

HETEROGENEITY CHL of LOT L



 On the contrary the Distributional Hetero-

geneity DHL is a function of :

 The Constitutional Heterogeneity CHL 

 The Size (number of constituents) of the 

  Groups Gn (the future increments I ) 

 The Constituent DISTRIBUTION through-

   out lot L, which accounts for its name.
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PROPERTIES OF THE 

DISTRIBUTIONAL 

HETEROGENEITY DHL OF LOT L



QUANTITATIVE APPROACH

ZERO-DIMENSIONAL 

MODEL OF THE 

SAMPLING PROCESS
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GEE : Global Estimation Error EGE Erreur Globale d’Estimation

TSE : Total Sampling Error ETE Erreur Totale d’Echantillonnage

TAE  : Total Analytical Error ETA Erreur Totale d’Analyse

TSE i : Total Sampling Error (stage i) ETE i Erreur Totale d’Echant. (étage i)

TSE 1 : Primary Sampling Error ETE 1 Erreur Primaire d’Echantillonnage

TSE 2 : Secondary Sampling Error ETE 2 Erreur Secondaire d’Echantillonnage

CSE : Correct Sampling Error EEC Erreur d’Echantillonnage Correct

ISE : Incorrect Sampling Error EEI Erreur d’Echantillonnage Incorrect

FSE : Fundamental Sampling Error EFE Erreur Fondamentale d’Echantillonnage

GSE : Grouping and Segregation Error ESG Erreur de Ségrégation et Groupement

PSE : Point Selection Error ESP Erreur de Sélection de Points

PME : Point Materialization Error EMP Erreur de Matérialisation de Points

IDE  : Increment Delimitation Error EDP Erreur de Délimitation des Prélèvements

IXE  : Increment Extraction Error EXP Erreur d’Extraction des Prélèvements

IPE : Increment and Sample Preparation EPP Erreur de Préparation des Prélèvements

Error et de l’Echantillon
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Errors / Erreurs ⧫ New / Nouvelles Notations



Global Estimation Error :

GEE  TSE + TAE  (TSE 1 + TSE 2 ) + TAE General relationship

TSE i   CSE i  + ISE i  Total Stage i Sampling Error 

Zero-dimensional model (populations) :

TSE  CSE + ISE  (FSE + GSE) + ISE

One-dimensional model (time series) :

TSE  PSE + PME

PME  CSE + ISE   (FSE + GSE) + ISE

ISE   IDE + IXE + IPE

General Case

TSE   (PSE + FSE + GSE) + (IDE + IXE + IPE)

(structural errors) + (circumstancial errors that can be cancelled)

(cannot be cancelled) + (can be cancelled)

The total sampling error TSE is the sum of six components

20

Relationships between Errors



The sampling of manageable lots CAN

EASILY, therefore MUST be …

Excludes all non-probabilist methods/devices 

reviewed in the qualitative approach. There 

can be no theory of non-probabilist sampling.

The development of the probabilist model

EXPLICITLY assumes that ALL constituents

Um of lot L have a certain probability Pm  0 

of being selected. Definitions …
21

PROBABILIST SAMPLING

PROBABILIST



This model, developed in 1951 and gene-

ralized in 1979, is valid for

 All 0-dim. lots of manageable size,

 All 1-dim. flowing streams on the 

scale of INCREMENTS.

It assumes that the NF constituents Fi  of L 

are submitted to a selection with a probability

Pi  0 of being selected.

22

THE PROBABILIST

SAMPLING MODEL



The mean and variance of the …             

Total Sampling Error TSE generated when 

Pi is not a constant have been figured out.

The most important conclusion is that …

The formulas for mean and variance can be 

found in our latest books but are USELESS

IN PRACTICE, except when sampling is 

CORRECT with Pi  P  constant … 
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When Pi  constant, then

m(TSE) is significantly  0. 

THE SAMPLING IS BIASED



With few exceptions – such as studies on 

small numbers of units in artificial conditions 

– the formulas involving the set of values of 

Pi can be applied only when :

i.e. when the selection is CORRECT. From 

now on we EXPLICITELY assume that THIS 

CONDITION IS DULY FULFILLED. 

24

PRACTICAL IMPLEMENTATION   

OF THE PROBABILIST MODEL

Pi   P  constant



 DEFINITION : 

The Fundamental Sampling Error FSE

is the error generated when the NF elements 

of lot L are submitted to a selection …

 With a uniform probability P of being 

selected (selection is assumed to be correct)

 One by one and independently.

FSE is the incompressible minimum of TSE.

25

THE FUNDAMENTAL 

SAMPLING ERROR  FSE



 STATISTICAL PROPERTIES OF FSE

 Distribution :

⧫ normal down to 1 ppm (or 1 g/t or 10-6)  

⧫ log-normal below 1 ppm.

 Mean : in first approximation

m(FSE)  0 : the sampling is unbiased

In second approximation :

26

1 – P            ai  – aL          Mi²

m(FSE)  – --------  i [ ----------  ------ ]

P                    aL             ML²



 Variance : first approximation …

The second approximation is given in our 

books. Is is useless in practice.

When the sampling ratio is low and to all 

intents and purposes …

27

1 – P                   1          1

²(FSE)  --------  CHL  [ -----  –  ----- ]  HIL
P NF                  MS        ML 

When MS << ML ⧫ ²(FSE)  HIL / MS 



 PRACTICAL EXPRESSION OF ²(FSE) 

The expression of HIL can be simplified :

 c : constitutional factor (math. defined)

  : liberation factor : 0    1

 f  : particle shape factor : practically f  0.5

 g : size distribution factor : 0  g  1

 d or d95 : top particle size (95% passing)
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HIL  c  f g d3    (dimension of a mass)

1          1

²(FSE)  [ -----  –  ----- ] c  f g d3 

MS       ML 



 CONSTITUTIONAL FACTOR  c 

 A and G  densities of A and non-A (G)

  Simplified ⧫ High-grade : c (1 – aL)  G

  Simplified ⧫ Low-grade : c  A  aL

  Simplified ⧫ Uniform  : c   (1 – aL)  aL

 UNITS :  and c always in g.cm-3 (tons.m-3)

aL always in decimal value : 1%  0.01 

1 ppm  1 g/t  10-6 (dimensionless)
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1 – aL 

 c  --------  [(1 – aL ) A + aL G ]  (g.cm-3)

    aL



 LIBERATION FACTOR  : 

   Its name is derived from the mineral indus-

 try where components are intertwined …

Generally speaking, the only safe way to 

estimate  is experimental (see books).

For gold ores, D. François-Bongarçon 

proposes the following expression derived 

from his studies and experience … 

where dlib is the liberation size of gold. 30

0    1    (dimensionless)

  (dlib / d )1.5



 OTHER FACTORS f , g , d  : 

 f : shape factor is a coefficient of cubicity

  Except for flat or elongated elements 

  practically : f  0.5

g : size distribution factor

 non-calibrated populations : g  0.25

 calibrated populations : 0.4 < g < 0.8

d or d95 : opening of the square mesh that 

 retains (or would retain) 5 % of mass ML.

 UNITS : f ,  and g are dimensionless,

  d should be expressed in cm. 31



 NULLIFICATION OF ²(FSE)

 First mathematical solution :

MS  ML : sample S  lot L. Useless.

 Second mathematical solution :

HIL  c  f g d3 = 0  ⧫  f g d3 always > 0  

c  0 when aL  1 : L is pure component A

 CONCLUSION : the fundamental variance

²(FSE) is never zero ²(FSE) > 0 32

1        1

²(FSE)  [ ----- – ----- ] c  f g d3 

MS     ML 



 MINIMIZATION OF ²(FSE)

 First solution involving MS : MS should 

 be as large as economically possible. 

 Second solution : c  f g d3 as small as 

possible. c  f g are data of the problem. The

only solution is to reduce d (solid fragments).

 CONCLUSION. Two solutions : to increase

MS and/or to reduce d (with solids only).  33

1        1

²(FSE)  [ ----- – ----- ] c  f g d3 

MS     ML 



 SOLVING SAMPLING PROBLEMS 

 Let K be the constant : K = c  f g and ²

be the variance ²(FSE)  K d3 / MS 

 We can solve three problems :

   knowing K , MS and d, estimate the 

corresponding “fundamental variance ² ”. 

   knowing K , 0² and d, estimate the 

minimum sample mass MS0  K d3 / 0² 

   knowing K , MS and 0² estimate requi-

red top particle size d. Only with particulate 

solids which can be crushed or ground.     34



 PRACTICAL COMPUTATION TOOLS 

The practical expression of HIL has been 

published in 1951. To solve sampling pro-

blems, several tools have been proposed :

 1955 : Pierre Gy : Charts  

 1956 : Pierre Gy : Circular Nomogram

 1965 : Pierre Gy : Sampling Slide Rule

COMPUTER PROGRAMS

 1986 : Pentti Minkkinen : Sampex 

 1986 : BRGM : Echant & Samp 1.0

 1997 : BRGM : Samp 2.0 35



 DEFINITION ⧫ A REMINDER : The

Correct Sampling Error CSE is defined as

the error generated when the NU units

making up the lot L are submitted to the 

selection process with a uniform probability 

P of being selected.

We must now distinguish between two 

cases …

36

BREAKING UP THE CORRECT 

SAMPLING ERROR CSE



 The NF elements of lot L can be submitted 

to the selection …

 EITHER one by one and independently

this selection generates the Fundamental 

Sampling Error FSE. We can do no better…

 OR by groups of adjoining, non-inde-

pendent elements : this generates the

ADDITIONAL Grouping and Segregation 

Error GSE (most frequent case) :

37

CSE  FSE

CSE  FSE + GSE



The Error FSE has a double pecularity :

 FSE is the absolute minimum of the

Correct Sampling Error CSE and of 

the Total Sampling Error TSE

 FSE is the only error that can be estimated 

on the basis of the material properties

and of the selecting conditions.
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IMPORTANT  WARNING

TSE   CSE  FSE 



One should not forget, however, AS MANY 

PEOPLE DO that FSE is NOT the sole 

error involved and that it is the most impor-

tant only with coarse solids. NEVER FORGET 

THAT formulas such as the formula giving 

²(FSE) are valid ONLY if a certain number 

of conditions are fulfilled, namely :

 The selection is CORRECT,

 The elements are taken ONE BY ONE 

and INDEPENDENTLY.

These are VERY SELDOM FULFILLED ! 39

BEWARE OF FORMULAS 



 THEORY : FSE is the component of the 

correct error CSE generated when the NF

elements of L are submitted to the selection

ONE BY ONE and INDEPENDENTLY.

 ACTUAL PRACTICE : elements are 

extracted by INCREMENTS i.e. by GROUPS  

OF NON-INDEPENDENT ADJOINING ELE-

MENTS which generates an additional error 

… 40

GROUPING AND SEGREGATION 

ERROR  GSE



 GROUPING AND SEGREGATION ERROR

GSE is the error that adds up to FSE when 

the elements are submitted to a selection …

 With a uniform probability P of being 

selected : the selection is CORRECT,

 By groups of adjoining non-indepen-

dent elements forming the INCREMENTS.

 Adjoining elements are often correla-

ted as the result of differential segregation in 

Earth’s field of gravity. Hence the name of

Grouping and Segregation Error GSE .

41



 DISTRIBUTION OF GSE : normal except 

with traces …

 EXPECTED VALUE m(GSE) : when the 

selection of groups is correct : m(GSE)  0

 VARIANCE ²(GSE) : in practice, can be 

estimated experimentally by difference, only :

with :  Y  Grouping factor, 

 Z  Segregation factor. 42

STATISTICAL PROPERTIES of GSE

²(GSE)  ²(CSE) – ²(FSE)

²(GSE)  Y   Z   ²(FSE)



 ²(GSE), product of three factors is nullified 

when, and only when, one of them is zero :

 Y : Grouping factor  0 when increments 

are made of one, and only one, element. 

 Z : Segregation factor  0 when, and 

only when L has been well homogenized.

 ²(FSE) : is never zero (see above).

 CONCLUSION : the only way to nullify GSE

would be to homogenize L prior to sam-

pling. Elements distributed at random.

43

NULLIFICATION OF ²(GSE)



Homogenizing, perfect or not, can be 

achieved only if L is small enough to be 

thoroughly mixed.

 ²(GSE), usually not zero, is minimized 

 By taking small increments,                    

 By mixing L as thoroughly as possible,  

 By minimizing ²(FSE) as seen above.

 CONCLUSION : we never try to estimate 

GSE. We minimize it as best as we can. 

44

MINIMIZATION OF ²(GSE)



 FSE stems from the sole CONSTITUTIO-

NAL HETEROGENEITY CHL of L. 

Like CHL , to which it is proportional,

²(FSE) can never be nullified.

 GSE stems from the sole DISTRIBUTIO-

NAL HETEROGENEITY DHL of L. 

Like DHL , ²(GSE) can be minimized by

homogenizing lot L prior to sampling.

45

ROOTS of  FSE and  GSE



 The Correct Selection Error CSE is the 

sum of two, and only two, components :

 a structural error FSE which can never 

be nullified but can be estimated and …

 a circumstantial error GSE which 

cannot be estimated theoretically.

 We know how to minimize both FSE and

GSE and with them CSE. 46

PROPERTIES OF THE CORRECT 

SAMPLING ERROR  CSE

CSE = FSE  + GSE 



So far we have assumed that the condi-

tions of correct sampling were fulfilled and 

that the Total Sampling Error TSE was 

limited to the Correct Sampling Error CSE.

But this is not always the case and an

Incorrect Sampling Error ISE often takes 

place. ISE is more frequently observed 

with one-dimensional lots. For this reason,

ISE will be studied in the seventh part.

47

THE INCORRECT SAMPLING 

ERROR  ISE
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