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Lot L flows between instants t = 0 and t = TL

The unknown of the problem is the average

grade aL of L. Grade a(t) is the proportion of 

component A in the slice of matter that 

crosses the « sampling plane » between time

t and t + dt. Grade aL of L is the integral mean 

of a(t) whose algebraic expression is never 

known.
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ESSENCE OF THE PROBLEM

aL  a(t) dt 
1

------

TL

TL

0



The best we can do is to assay samples

taken at a uniform interval in segment [ 0, TL ]

This operation can be broken up into two 

error-generating steps :

 SELECTION of Q extensionless Point-

Increments Iq (instant tq ). The segment [ 0, TL ] 

is replaced by a series of Q values of a( tq).

 MATERIALIZATION of Points-Increments, 

i.e. transformation of points Iq into Material-

Increments ready for assay ➔ est [a ( tq) ].
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Time axis :  0 t1 t2 t3 t4 t5 TL

Yellow area is

the true value of

product aL TL

Red area is

the value of

product aS TL

Generates Point Selection Error PSE …    4

Yellow

SELECTION OF POINT-INCREMENTS
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Lot L flows between instants t = 0 and

t = TL. The Point Selection Error PSE is 

the error committed when the segment [ 0,TL]

is replaced by a series of Q Point-

Increment Iq. PSE is studied farther on.

There remains to materialize the immaterial, 

extensionless points Iq …
5

POINT SELECTION ERROR PSE

aS TL - aL TL Red minus Yellow

PSE   ----------------  -------------------------

aL TL Yellow



The problem is to transform a series of…

 IMMATERIAL, EXTENSIONLESS POINTS

on the time axis into … 

 MATERIAL INCREMENTS and then into 

a MATERIAL SAMPLE obtained by   

gathering the increments that collectively 

represent the lot L .

6

MATERIALIZATION OF THE 

POINT- INCREMENTS



nb
To the …

POINT SELECTION ERROR PSE

adds up the …

POINT MATERIALIZATION ERROR PME.

The TOTAL SAMPLING ERROR TSE can 

therefore be expressed as follows :
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BREAKING UP THE TOTAL 

SAMPLING ERROR TSE

Total Sampling Error TSE 

TSE  PSE + PME



The materialization of the point-increments

can be broken up into a sequence of four 

logical steps …

 DELIMITATION

 DISCRETIZATION

 EXTRACTION

 PREPARATION

that we are going to review now.
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 DELIMITATION of a volume of matter : 

this Volume-Increment VI does not take the 

discrete nature of the fragments into account

 DISCRETIZATION  definition of a Model 

Material-Increment MMI made of fragments 

« pertaining to » the Volume-Increment,

 EXTRACTION of Actual Material-Incre-

ment AMI from the Model Material-Increment 

 PREPARATION  Gathering / Processing 

of Actual Material-Increments and Sample to 

form the Sample Ready for Assay. 
9



Delimitation is a purely geometrical step 

which consists in transforming an …

 IMMATERIAL, EXTENSIONLESS 

POINT : the « Point-Increment » into a …

 VOLUME : the three-dimensional 

« Volume-Increment ». 

This operation can be broken up into seve-

ral steps that may be correct or incorrect …
10

INCREMENT DELIMITATION

⧫ THE VOLUME-INCREMENT ⧫



We define a certain volume of matter that 

does not respect the fragments boundaries.

This aspect is taken care of in the second step

 The Zero-dimensional Point I0 is exten-

ded into a One-dimensional Segment I1
I0 I1 (length t )

 The One-dimensional Segment I1 is ex-

tended into a Two-dimensional Surface I2 
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I2I1



E

M

P

 The Two-dimensional Surface I2 is ex-

tended into a Three-dimensional Volume I3

I3 is called the « Volume-Increment »

I3 is shown here in horizontal projection 

A B C D on which we will now reason.
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DEFINITION : P  constant. Involves that

all threads of the stream be cut during the 

same lapse of time, which entails that faces

AB and CD be parallel. Examples :

Correct Correct Incorrect 13

CROSS-STREAM ⧫ CORRECT 

INCREMENT DELIMITATION 

I3

B        D B          D B       D    

Threads I3I3

A        C                   A         C                A              C



CORRECT DELIMITATION

 CUTTER GEOMETRY : it is correct when, 

and only when (three cases) :

⧫ Straight path cutter : edges are parallel,

⧫ Circular path cutter : edges are radial,

⧫ Undefined path (hand sampling) : there 

is no correct geometry. Never correct.

 CUTTER VELOCITY : it is correct when, 

and only when, the velocity is uniform during 

the stream crossing. 

14



O

INCORRECT DELIMITATION

 INCORRECT CUTTER GEOMETRY :

⧫ Straight-path cutter : incorrect when 

deformed by wear or obstructed.

⧫ Circular-path device: ill-designed cutter 

studied in Angola in 1973 (frequent) 
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Incorrect

Correct

O  axis

O  axis



 CUTTER VELOCITY is INCORRECT 

when the cutter ... 

⧫ Does not reach its nominal velocity. 

The idle positions are too near the stream.

⧫ Slows down when cutting the stream. 

The drive is not powerful enough. 

⧫ Hydraulic, pneumatic, magnetic, hand 

drives. Cannot warrant a uniform velocity.
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ELECTRIC DRIVE ALONE, when powerful    

enough, warrants a UNIFORM VELOCITY



 Incorrect lay-out of a correct cutter
⧫ Never cuts a certain fraction of the stream

Projection Cut

⧫ Cuts a certain selective fraction of the 

stream when idle (rebounds, splashes).

Projection Cut
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P  0  in 

red area

P  1 in red area

Ideal

Actual

Actual

Ideal



 Structurally incorrect design

⧫ Flap samplers (usually « home-made »)

Stream to be sampled

◼ Flap in idle (off ) position 

◼ Flap in sampling (on) position 

The delimitation has the 

incorrect shape of a trapeze

instead of a parallelogram.

Same defect with flexible 

hose samplers (small rates)
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R    S*

To 

PROCESS SPECIMEN (incorrect)



DELIMITATION : Two-dimensional projection

⧫ CORRECT

1. Model : Frame on a stopped belt, 

2. Cross-stream from left to right,

3. Cross-stream from right to left.

⧫ INCORRECT

4. Flap and flexible hose,

5. Cross-stream that slows down,

6. Cross-stream that does not reach its   

nominal velocity and is still accelerating.

19

3

4

1 2

5 6



20

When delimitation does not respect condi-

tions of correctness, an error takes place …

INCREMENT DELIMITATION ERROR IDE

This error cannot be estimated beforehand. 

Experience shows it can be very large.

The only efficient strategy with IDE is to …

20

INCREMENT  DELIMITATION 

ERROR  IDE

ELIMINATE  IDE BY IMPLEMENTING

CORRECT EQUIPMENT CORRECTLY



THE REBOUNDING RULE

A fragment F bounces towards the 

cutter side that contains its center 

of gravity G. Fragments behave as 

if they were condensed in G. All 

fragments whose center of gravity 

falls within the Volume-Increment

make up the …Rebound on              

cutter edge 

F

G 
F

DISCRETIZATION

⧫ MODEL MATERIAL-INCREMENT ⧫

21

Model Material-Increment

FG



We cannot isolate the matter contained in

the « Volume-Increment VI » (center : green 

areas     ). We therefore have to transform the

volume I3 into a group of fragments. 

According to the rebounding rule model, 

each fragment F behaves as if it was conden-

sed in G. G2 falls within the « Volume-Incre-

ment VI » (center), then F2 belongs to the

« Model Material-Increment MMI » (right).  

F1 does not. 22
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The « Model Material-Increment » MMI

Horizontal projection of Volume-Increment VI

According to the rebounding rule F1 and F2

are condensed in    G1 and    G2 . Therefore :

G2 falls within VI ➔ F2 does belong to MMI

G1 falls outside VI ➔ F1 does NOT belong 

to MMI 23

F1
F2

G1 G2

F2
F1

Lot L

G2G1

VII3



Due to the existence of the structural    

« Constitutional Heterogeneity » of the mate-

rial, the Model Material-Increment MMI differs 

from the Volume-Increment VI. This differen-

ce is a random variable.
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The variance of the population of all 

possible « Model Material Increments »

MMI is nothing other than the variance 

of the structural … 

« Fundamental Sampling Error FSE »

defined by the zero-dimensional sam-

pling model.



We have abstractedly defined the composi-

tion of « Model Material-Increment MMI »

There remains to concretely extract an

« Actual Material-Increment AMI ».

This operation may be differential or selec-

tive : the extraction probability is no longer 

uniform. In other words the selection may be 

incorrect. If that is the case, we observe an 

INCREMENT EXTRACTION ERROR IXE
25

INCREMENT EXTRACTION

⧫ ACTUAL MATERIAL-INCREMENT⧫



An « Increment Extraction Error IXE »

takes place as soon as the rebounding rule is 

not UNIFORMLY respected for ALL fractions

or classes (e.g. size- or density-classes). 

This may involve a selective or differential 

interaction between the cutter and the 

material being sampled.

This is usually due to the inadequacy of the 

cutter characteristics …

26

INCREMENT EXTRACTION 

ERROR IXE



The two critical parameters are again :

 the cutter geometry : width W

 the cutter velocity V

Experimental results (1978) show that :

W  W0 = 3 d and W < W0 = 3 d or

V   V0   = 0.6 m/s V  > V0   = 0.6 m/s 

27

W Lost for the 

increment

Correct Extraction Incorrect  Extraction

W



The increments are gathered, transferred, 

crushed, ground, dried, etc… to form the

« Sample Ready for Assay SRA ». These 

operations are potentially error-generating.

Correctness demands that increments and 

sample remain unaltered. If they are altered, 

an …

INCREMENT or SAMPLE  PREPARATION 

ERROR IPE

takes place … 28

INCREMENT PREPARATION 

⧫ SAMPLE READY FOR ASSAY ⧫



We disclosed six components to IPE …

 Losses : all elements entering the cutter 

must be recovered in sample (e.g. dust … )

 Contamination : no extraneous element

may be allowed into sample (dust, material 

belonging to other sample, rust, etc.)

 Alteration of the chemical composition

e.g. loss of constitutional water upon drying 

(overdrying of silicates) ... 29

INCREMENT AND SAMPLE 

PREPARATION  ERROR  IPE



 Alteration of the physical composition.
Specific to moisture and size analysis,

 UNINTENTIONAL operational mista-

kes : negligence, handling, labelling, mixing 

up fractions belonging to different samples ...

 DELIBERATE TAMPERING WITH 

SAMPLES OR ASSAY RESULTS 
Defrauding is not unfrequent in trade and 

environmental control. Examples with GOLD

(e.g.Borneo : Bre-X !) and URANIUM.
30



 correct Delimitation ➔ IDE  0 

 correct Extraction ➔ IXE  0 

 correct Preparation ➔ IPE  0

which entails :
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CONSEQUENCES OF A CORRECT 

POINT MATERIALIZATION

Correct Materialization of Point-Increments

PME  ISE  IDE + IXE + IPE  0

Total Sampling Error TSE 

TSE  PSE + CSE



 GLOBAL ESTIMATION ERROR GEE

GEE  TSE1 + TSE2 + TAE

⧫TOTAL (PRIMARY) SAMPLING ERROR TSE1

⧫TOTAL (SECOND.) SAMPLING ERROR TSE2

⧫TOTAL ANALYTICAL ERROR TAE

32

BREAKING UP THE GLOBAL 

ESTIMATION ERROR  GEE

◼ ON THE SCALE OF THE …      

OVERALL ESTIMATION PROCESS



Each sampling stage is a sequence of 

several sampling sub-stages …

such as PRIMARY or SECONDARY stages 

 TOTAL SAMPLING ERROR TSE

TSE   CSE + ISE

⧫ CORRECT SAMPLING ERROR CSE

⧫ INCORRECT SAMPLING ERROR ISE

We have to distinguish between two cases 

… 33

◼ ON THE SCALE OF A GIVEN       

SAMPLING STAGE or SUB-STAGE



➔ ZERO-DIMENSIONAL MODEL

 TOTAL SAMPLING ERROR TSE

TSE   CSE + ISE

⧫ CORRECT SAMPLING ERROR CSE 

CSE   FSE + GSE

 FUNDAMENTAL SAMPLING ERROR FSE

 GROUPING / SEGREGATION ERROR GSE

⧫ INCORRECT SAMPLING ERROR ISE

34



➔ ONE-DIMENSIONAL MODEL

 TOTAL SAMPLING ERROR TSE

TSE   CSE + ISE

⧫ CORRECT SAMPLING ERROR CSE

CSE   PSE + PME

 POINT SELECTION ERROR PSE

 POINT MATERIALIZATION ERROR PME

PME  CSE + ISE  (FSE + GSE) + ISE

 FSE and GSE  STRUCTURAL errors

 ISE  CIRCUMSTANCIAL errors 35



⧫ INCORRECT SAMPLING ERROR ISE  

ISE   IDE + IXE + IPE

 INCORRECT DELIMITATION ERROR IDE

 INCORRECT EXTRACTION ERROR IXE

 INCORRECT PREPARATION ERROR IPE

THE TOTAL SAMPLING ERROR TSE IS

TSE   CSE + ISE 

TSE   (PSE + FSE + GSE) + …

… + (IDE + IXE + IPE) 36

AT EVERY SAMPLING STAGE or SUB-STAGE



Point-Selection is usually CORRECT, 

therefore UNBIASED. 

The estimation of the variance requires a 

new mathematical tool : the Variogram

introduced by Matheron to quantify the 

autocorrelation of space series of data, we 

implement it to quantify the autocorrelation 

of time series of data and estimate the 

variance ²(PSE). 37

VARIANCE OF THE POINT 

SELECTION ERROR PSE



A lot L flows between instants t = 0 and    

t = TL. The « grade » a(t) is the grade of 

the slice of matter that flows between 

instants t and t + dt. The unknown aL is …

but the algebraic expression of a(t) is 

never known. To approach a(t), the best 

we can do is to extract Q increments Iq at 

a uniform interval T0 … 38

aL  a(t) dt 
1

-----

TL

TL

0



Q increments Iq are extracted from the 

stream at a uniform interval T0. There 

remains … 

⧫ to weigh and assay them : mass Mq , 

grade aq

⧫ to compute the heterogeneity hq of Iq
and [defined below] the variogram v(jT0)

of hq which characterizes the autocorrela-

tion of h(t).To estimate the variance 

²(PSE), we also have to define the auxi-

liary and error-generating functions.        39



The lot L, grade aL, is represented by a 

series of Q point-increments Iq taken at 

instants tq  t1 + (q -1) T0 with 0  t1  T0 . 

The model variogram involves the true,

unknown values of a(tq), M(tq), h(tq) …

Where M*(tq ) is the average of M(tq ) 40

a(tq ) - aL M(tq ) 

h(tq)  -------------  ----------

aL M*(tq )

DEFINITION OF THE         « MODEL 

VARIOGRAM » of  h(tq)



The « model variogram » of the hetero-

geneity hq  h(tq ) is defined as follows …

h(q, j)  h(q+j) – hq : is the « increase »

of hq between tq and t(q+j)  tq + ( j – 1)T0

The variogram v( jT0) or, more simply

v( j), is the half-mean-square of h(q,j) 

(NOT the half-variance as mean m(h)  0).

41

 [h(q, j)]²

v( j) ---------------

2 (Q – j)



Practically, we know only experimental

estimates of a(tq), M(tq) and h(tq), namely 

aex (tq), Mex (tq) and hex (tq), with :

Where Mex*(tq ) is the average of Mex (tq ) 

and aL ex the estimate of aL. 42

DEFINITION OF THE 

« EXPERIMENTAL VARIOGRAM »

aex(tq ) – aL ex Mex (tq ) 

hex(tq)  -------------------  -----------

aL ex Mex*(tq )



Let …

vex (j) : be the « experimental variogram » 

computed by means of the experimental 

data aex (tq), Mex (tq) and hex (tq),

ex²  v0 = a (± constant) variance resulting 

from the estimation errors of a(tq), M(tq)

and h(tq), including the sampling errors.

Theory shows that …

43

EXPERIMENTAL VARIOGRAM

vex (j) = v (j) + ex ² = v (j) + v0 



The values of the experimental variogram 

are equal to those of the model variogram 

increased by a constant variance.

Graphically, the variogram is lifted by the 

same quantity.

As the model variogram is a CONTINUOUS 

FUNCTION, easy to show that v(0)  0. The 

value of vex(0), intercept of the experimental 

variogram, is therefore equal to ex². Hence 

the practical importance of this intercept.

44

v(0) = 0    ➔ vex(0) = ex² = v0 = Intercept



First Example : Feed to a uranium mineral 

processing plant. Increasing variogram.

45

EXAMPLES OF VARIOGRAMS

Variogram : unit = 1  10-6

j = 2 mnv0

Sill of the variogram = variance s²(hq)



Second Example : Feed to a cement kiln. 

Variogram for heterogeneity of CaO %

46

Second Example : Feed to a cement kiln. 

Variogram for heterogeneity of CaO %

46

EXAMPLES OF VARIOGRAMS

= 1  10-6

j = 2 mn

Variogram v(j): unit = 1  10-6

v0

Sill of the variogram = variance s²(hq)

Range of the variogram = 48 mn

0              5           10          15           20           25  lag j  30

1000

2000

2760

3000

0



Third Example : Feed to a cement kiln. 

Variogram of the increment masses.

Typical example of a cyclic variogram. 

The best estimate of v0 is the first minimum 47

EXAMPLES OF VARIOGRAMS

Variogram : unit = 1  10-4

20 50 60403010

Lag j in minutes

Sill

Period P

200

150

100

50

0

v0



Fourth Example : Feed to a zinc flotation 

plant. Variogram for Zn. Cyclic. Long period. 

48

EXAMPLES OF VARIOGRAMS

Variogram : unit = 1  10-2

Unexplained phenomenon 

with a 200 mn period



Fifth Example : Output of a bed-blending, 

fed to a cement kiln. Variogram of SiO2 %

Cyclic. Very short period (4 to 5 seconds). 

The best estimate of v0 is the first minimum.

49

EXAMPLES OF VARIOGRAMS

Seconds

Variogram : unit = 1  10-4

Sill



Sixth Example : Output of a bed-blending, 

fed to a cement kiln. Variogram of CaO %

Same material as in fifth example. Same 

cyclic pattern with same period. Correlation 

between the different components. 50

EXAMPLES OF VARIOGRAMS

Seconds

Variogram : unit = 1  10-4

Sill



Seventh Example : Output of a bed-blending 

fed to a cement kiln. Variogram of Fe2O3

Same material as above. Same cyclic 

pattern with same period. Functioning of 

paddle chain conveyor. No practical impact.

51

EXAMPLES OF VARIOGRAMS

Seconds

Variogram : unit = 1  10-4

Sill



Eighth Example : Output of a bed-blending 

fed to a cement kiln. Variogram of Al2O3

Same cyclic pattern as above. 52

EXAMPLES OF VARIOGRAMS

Seconds

Variogram : unit = 1  10-4

Sill



To derive the variance ²(PSE) from the 

variogram v(j), we must introduce several 

mathematical «bridges». Those are the…

 AUXILIARY FUNCTIONS w(j) and w’(j),

single / double integral means of v(j).

 ERROR-GENERATING FUNCTIONS

WSY ( j), WST ( j) and WRA ( j), which take 

the « point selection mode » into account.  
53

FROM THE MODEL VARIOGRAM 

v(j) TO THE VARIANCE ²(PSE)



The single and double integrals of

v(j) are required in our computations. We 

define :

 The single integral S(j) of v(j),

 The single integral mean w(j) of S(j).

54

THE AUXILIARY FUNCTIONS S(j)

and w(j) OF THE VARIOGRAM v(j)

1

w(j)  --- S(j)  v(j’) dj’ 
j

1

---
j

j

0




We also define :

 The double integral S’(j) of v(j)

 The double integral mean w’(j) of S’(j)

55

THE AUXILIARY FUNCTIONS S’(j)

and w’(j) OF THE VARIOGRAM v(j)

1

w’(j)  --- S’(j)  dj’ v(j") dj"
j

2

---
j²

j

0
 

j’

0



Out of an infinity of possible selection 

modes we shall retain the following …

 SY : systematic (uniform interval TSY ), 

tq  t1 + (q -1) TSY  ⧫ t1  ran [ 0 < t1  TSY ]

 ST : stratified random (uniform strata 

length TST ), 

tq  (q -1) TST + t’q ⧫ t’q  ran [ 0 < t’q  TST ]

 RA : random (Q random increments in L)

tq  ran [ 0 < tq  TL ] 56

THE THREE « REFERENCE »     

POINT SELECTION MODES



 SY : systematic with random positioning 

of first increment anduniform intervalTSY

tq  t1 + (q -1) TSY  ⧫ t1  ran [ 0 < t1  TSY ]

L 0 t1 TSY TL

S 0   t1 TSY t2          t3          t4          t5          t6     TL

SY : most common selection mode. Easy 

to implement. Only shortcoming : risk of a 

high variance when sampling periodic

functions, more frequent than believed. 57

⧫ ⧫ ⧫

⧫ ⧫



 ST : stratified random (equal strata length 

TST), random positioning in each stratum 

tq  (q -1) TST + t’q ⧫ t’q  ran [ 0 < t’q  TST ]

0    TST 1           2           3           4            5  TST

t1                          t2       t3                       t4               t5 TL

 RA : random (Q increments selected at 

random between 0 and TL)

tq  ran [ 0 < tq  TL ]
0                                                                 TL

t1   t2                           t3         t4                  t5 TL 58

⧫⧫⧫⧫⧫⧫

⧫⧫



 ST : stratified random justified in one case 

only : the sampling of periodic functions. In 

this case there is a risk when implemen-

ting a systematic selection : if the interval 

TSY is a multiple of the period P of the 

function, the same point of the curve is 

selected. A Q-increment sample brings no 

more information than a one-increment 

sample.The variance is then multiplied by 

Q which often is a large number. 

59



Grade functions with a periodic compo-

nent are much more frequent than usually 

believed. A number of mechanical devices 

such as crushing and grinding circuits, 

flow-rate regulating systems, centrifugal 

sand or slime pumps operate in a pulsated

way with a more or less uniform period.

 RA : Never better than SY or ST. Equiva-

lent to assimilating a series with a popula-

tion. Shows inadequacy of standards !
60



 SY : Systematic EGF

WSY (j)  2 w(j/2) – w’(j)

 ST : Stratified random EGF

WST (j)  w’(j)

 RA : Random EGF

WRA (j)  ²(hq)  DHL  WRA  constant

61

EGF  ERROR GENERATING 

FUNCTIONS WSY ( j) ⧫ WST (j) ⧫ WRA (j)



The « Error-Generating Functions » of 

a series are the one-dimensional equiva-

lents of the variance of a zero-dimensional 

population. 

In other words, in both cases, the 

sampling variance is expressed as the 

EGF or the variance divided by the 

number Q of increments.

⧫ 1-DIMENSION : ²(PSE)  W **  Q

⧫ 0-DIMENSION : ²(TSE)  ²  Q
62



 SY : Systematic with interval TSY

²(PSE)SY  WSY (TSY )  Q

 ST : Stratified random with strata 

length TST

²(PSE)ST  WST (TST )  Q

 RA : Random selection of Q increments

²(PSE)RA  WRA  Q

63

VARIANCE ²(PSE) OF THE   

POINT SELECTION ERROR PSE
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